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Abstract— The main objective of this paper is to apply the Riccati sub-equation method to establish new exact solutions for the nonlinear component 

fractional Hybrid lattice Equation. As a result, new traveling wave solutions including hyperbolic function solutions, trigonometric function solutions and 

rational function solutions are obtained. Our solutions can be viewed as a generalization to the results which found in some recent published papers.  
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1 INTRODUCTION                                                                     
onlinear differential difference equations (NDDEs) play a 

crucial role in many branches of applied physical scienc-

es such as condensed matter physics, biophysics, atomic 

chains, molecular crystals, and discretization in solid-state and 

quantum physics. They also play an important role in numeri-

cal simulation of soliton dynamics in high-energy physics be-

cause of their rich structures. Therefore, researchers have 

shown a wide interest in studying NDDEs since the original 

work of Fermi et al. [1] in the 1950s. Contrary to difference 

equations that are being fully discretized, NDDEs are 

semidiscretized, with some (or all) of their space variables be-

ing discretized, while time is usually kept continuous. As far 

as we could verify, little work has been done to search for ex-

act solutions of NDDEs. Hence, it would make sense to do 

more research on solving NDDEs. [ 2-3]. Many analytic ap-

proximate approaches for solving nonlinear differential equa-

tions have been proposed and the most outstanding one is the 

homotopy analysis method (HAM) and fractional sub-

equation method .  In recent years, many authors have paid 

attention to studying the solutions of nonlinear partial differ-

ential equations and nonlinear differential difference equations 

by various methods [4-20]. 

The main objective of the present paper is  to apply fractional 

sub-equation method to establish new exact solutions for the 

nonlinear component fractional  lattice Equation 

0 1η≤ < , ( )n nu u t=  and ,α β ,γ  
are  constants.  

As a result, new traveling wave solutions including hyperbolic 

function solutions, trigonometric function solutions and ra-

tional function solutions are obtained. Our solutions can be 

viewed as a generalization to the results which found in some 

recent published papers. In the next of this section, we give 

some definitions and properties of the modified Riemann- Li-

ouville derivative [21] which are used in this paper. Assume 

that ( ): ,f R R x f x→ : denote a continous (but not neces-

sarily differentiable) function, and let h  denote a constant dis-

cretization span, Jumarie’s defined the fractional derivative in 

the limit form 

( ) ( ) ( )
0

0
lim ,0 1
h

f
f x f

x
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α
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α
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       This definition is close to the standard definition of the 

derivative (calculus for beginners) and as a direct result, the 
α − th derivative of a constant, 0 1,α< < is zero. An alterna-

tive, which is the strictly equivalent to Eq. (1) is the following 

expression as  

( ) ( )
( ) ( ) ( )
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1 0 ,0 1
1

x
f dx x f f d

dx
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α x x x α
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−

= − − < < ∫  Γ −
           

and 

( ) ( ) ( )( )( )
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nnf x f x n n n
α

α α
−

= ≤ ≤ + ≥ .    

Some properties of the fractional modified Riemann-Liouville 

derivative were summarized in four useful formulas of them 

are  

( )
( )
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The rest of this paper is organized as follows. In Sec. 2, we give 

the description of the proposed method. Then in Sec. 3 we ap-

ply the method to find exact solutions for the non linear com-

ponent fractional lattice Equation  

( )( )2
1 1D u u u u un n n nnt

η α β γ= + + −− + , where 0 1η≤ < , 

( )u u tn n=  and ,α β , γ  are  constants . Some conclusions are 

presented at the end of the paper. 

2 DESCRIPTION OF THE EXTENDED RICCATI SUB-
EQUATION METHOD  

The main steps of the extended Riccati subequation method for 

solving nonlinear lattice equations are summarized as follows:  

Step 1. Consider a system of M  polynomial nonlinear lattice 

equations in the form 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 1

2

'

' '

, ,..., , ,
0

,..., ,...,
k

k k

n p n p n p n p

r
n p n p n p

u x u x u x u x
P

u x u x u x
+ + + +

+ + +

 
  =
 
 

(2) 

where the dependent variable u  has M  components iu , the 

continuous variable x   has N  components jx , the discrete 

variable n  has Q  components in , the k  shift vectors 

Q
sp ∈  has Q  components 

jsp , and ( ) ( )ru x   denotes the 

collection of mixed derivative terms of order r . 
Step 2. Using a wave transformation 

( ) ( )
1 1

,
s s

Q N

n p n p n n i i j j
i j

u x U d n c x+ +
= =

= = + +∑ ∑x x ζ  

where , ,i jd c ζ  are all constants, we can rewrite Eq. (2) as 

the following nonlinear form: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))

1 2 1

2 1 2
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x x x x

x x x x x

(3)  
Step 3. Suppose the solutions of Eq. (3) can be denoted by 

( ) ( ) ( )
0

l
i

n n i n
i

u x U a
=

= =∑x φ x                                (4) 

where ia  are constants to be determined later, l is a positive 

integer that can be determined by balancing the highest order 

linear term with the nonlinear terms in Eq. (3), ( )nφ x  satis-

fies the known Riccati equation: 

( ) ( )2n n
n n

n

d
d

= +
φ x

σ φ x
x

                                          (5) 

Step 4. We present some special solutions 1 2 6, ,...,φ φ φ  for Eq. 

(5): 

 

When 0<σ , 

( ) ( )1 0tanh ,n n cφ x σ σx= − − − +

 

( ) ( )2 0coth ,n n cφ x σ σx= − − − +
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where 0c  is an arbitrary constant. 

When 0>σ , 

( ) ( )3 0tan ,n n cφ x σ σx= +

 

( ) ( )2 0cot ,n n cφ x σ σx= − +
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 and 

( ) ( ) ( )5 0 0tan 2 sec 2 ,n n nc cφ x σ σx σx = + + +  
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Where 

 ( ) ( ) ( )( )1
5 0tan 2 ,n n cφ x σ σx= +  

( ) ( ) ( )( )2
5 0sec 2n n cφ x σ σx= + ,  

and 0c  is an arbitrary constant. 

when 0=σ , 
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and 0c  is an arbitrary constant. 
 

Step 5. Substituting (4) into Eq. (3), by use of Eqs. (5)-(9), the 

left hand side of Eq. (3) can be converted into a polynomial in 

( )nφ x . Equating each coefficient of ( )i
nφ x  to zero, yields a 

set of algebraic equations. Solving these equations, we can ob-

tain the values of , ,i i ja d c  . 

Step 6. Substituting the values of ia  into (4), and combining 

with the various solutions of Eq.(5), we can obtain a variety of 

exact solutions for Eq. (2). 

2  APPLICATION OF THE EXTENDED RICCATI SUB-
EQUATION METHOD 

 
 In this section, we will apply the described method to the frac-

tional Hybrid lattice equation: 

( )( )2
1 1nn n nnt

D u u u u u− += + + −η α β γ ,0 1≤ <η , 

Using a fractional complex transformation 
( )1
xT =

Γ +
η
η

 and 

letting ( ) ( ) , 0, 1
s sn p n p n su x U p+ += = ±x , we have

1xD T =η . Letting ( ) ( ) 1 1,n n n nU T U d n c T
−

= = + +x x ζ , 

where 1 1, ,d c ζ  are all constants, Eq. (2) can be rewritten in 

the following form: 

( ) ( ) ( )' 2
1 n n n n n nU U U xc x x xα β γ

− −− 
  
 

= + +                    

( ) ( )1 1n n n nU Ux x
− −

− +
 
 
 

−                   (10) 

Suppose the solutions of Eq. (10) can be denoted by 

( ) ( )
0

l
i

i n
i

an nU
=

−
=∑ φ xx                                                (11) 

where ( )nφ x  satisfies Eq. (5). Balancing the order of 

( )'
n nU
−

x  and ′ ( )2
n nU
−

x  in Eq. (10) we obtain 1 2l l+ = , 

and then 1l = . So we have 

( ) ( ) ( )
1

0 1
0

i
i n n

i
a a an nU

=

−
= = +∑ φ x φ xx .               (12) 

We will proceed to solve Eq. (2) in several cases. 

Case 1.  If 0<σ , and assume (5) and (6) hold, then substi-

tuting (12), (5) and (6) into Eq. (10), collecting the coefficients of 

( )1,2
i

nφ x  and equating them to zero, we obtain a series of al-
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gebra equations. Solving these equations, yields 
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So we obtain the following solitary wave solutions: 
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Case 2.  If 0>σ , and assume (5) and (7) hold, then substi-

tuting (12), (5) and (7) into Eq. (10), collecting the coefficients of 

( )1,2
i

nφ x  and equating them to zero, we obtain a series of al-

gebra equations. Solving these equations, yields 

( )2
1

1

tan4 ,
2

d
a

σβ αγ
σ γ

−−
= ±

 ( )
2

2
0 1 1 1 1

4, , tan , 4 0
2 2

a d d c dβ β αγ σ β αγ
γ σγ

−
= − = = − >  

Then we have the following trigonometric function 

solutions: 

( ) ( )12
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4
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d
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γ γ
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Case 3.  If 0σ > , and assume (5) and (8) hold, then substi-

tuting (12), (5) and (8) into Eq. (10), using 

( ) ( ) ( ) ( )
2 22 1

5 5n n
   = +   φ x σ φ x  collecting the coefficients 

of ( ) ( ) ( ) ( )2 1
5 5

i j

n n
   
   φ x φ x ( )1,2

i
nφ x  and equating them to 

zero, we obtain a series of algebra equations. Solving these 

equations, yields 

1 1 0 1

2 2
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, , ,
2 4
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or  
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4 41, , arccos ,
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a

c a
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So we obtain the following four groups of trigonometric func-

tion solutions: 
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2
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1
2
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tan 2 2
4

2
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4
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where 1 0,a c  are arbitrary constants, and 1 0a ≠ . 
 

Case 4.  If 0σ = , and assume (5) and (9) hold, then substitut-

ing (31), (5) and (9) into Eq. (10), collecting the coefficients of 

( )i
nφ x  and equating them to zero, we obtain the following 

solutions: 

Then we have the following trigonometric function solutions: 

2
1

1 0 1 1
4 , ,

2 2
da a d dβ αγ β

γ γ
−

= ± = − = ,

 ( )2
1 2

1

4
, 4 0

2
d

c
β αγ

β αγ
γ

−
= ± − > . 

Then we obtain the following rational solution: 

( ) ( )
2

1
1 2

1
1 0

4 1
2 24

2

dan n d
d n t c

U β αγ β
γ γβ αγ

ζ
γ

x
 

−  
−  = ± × − −

 + + + 
 

=
 

where 1 0,d c are arbitrary constants. 

4. CONCLUSIONS 
 
In this paper, the fractional sub-equation method has been 

successfully applied for establish new exact solutions for the 

nonlinear component fractional lattice equations.  The result 

shows that the fractional sub-equation is a powerful and effi-

cient technique in finding exact solutions for nonlinear differ-

ential equations. In conclusion, the fractional sub-equation 

method may be considered a nice refinement in finding the 

exact solutions for the nonlinear component fractional lattice 

equations existing and may find wide applications. 
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